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Abstract

A linear inverse model (LIM) is used to predict Pacific (30ºS-60ºN) sea surface temperature 

anomalies (SSTA), including the Pacific Decadal Oscillation (PDO). The LIM is derived from 

the observed simultaneous and lagged covariance statistics of three-month running mean Pacific 

SSTA for the years 1951-2000. The model forecasts exhibit significant skill over much of the 

Pacific for two-three seasons in advance and up to a year in some locations, particulary for 

forecasts initialized in winter. The predicted and observed PDO are significantly correlated at 

leads of up to four seasons, e.g. the correlation exceeds 0.6 for 12-month forecasts initialized in 

JFM. The LIM-based PDO forecasts are more skillful than persistence or a first order 

autoregressive model, and have comparable skill to LIM forecasts of El Niño SSTA. Filtering the 

data indicates that much of the PDO forecast skill is due to ENSO teleconnections and the global 

trend.

Within LIM, SST anomalies can grow due to constructive interference of the empirically 

determined modes, even though the individual modes are damped over time.  For the Pacific 

domain, the basin-wide SST variance can grow for ~14 months, consistent with the skill of the 

actual predictions. The optimal structure (OS), the initial SSTA pattern that LIM indicates should 

increase the most rapidly with time, is clearly relevant to the predictions, as the OS develops into 

a mature ENSO and PDO event 6-10 months later. The OS is also consistent with the seasonal 

footprinting mechanism (SFM) and the meridional mode (MM); the SFM and MM involve a set 

of atmosphere-ocean interactions that have been hypothesized to initiate ENSO events. 
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1. Introduction

Accurate predictions of upper ocean conditions, including sea surface temperature anomalies 

(SSTAs), can provide many economic and societal benefits. For example, forecasts based on the 

state of the climate system, especially the state of ENSO and Pacific SSTs in general have the 

potential to provide useful information to fishermen, farmers, water resource managers and 

industry (Dettinger et al. 1999; Stern and Easterling 1999; Hill et al. 2000; Hamlet et al. 2002; 

Huppert et al. 2002). 

Studies examining the predictability of North Pacific SSTs date back nearly half a century 

(Roden and Groves 1960). While the idea that North Pacific SSTs could be used to predict 

atmospheric conditions was explored more fully in the following decades (e.g. Namias 1972; 

1976), the extratropical SSTs generally lagged variations in the overlying sea level pressure 

(SLP) field, suggesting the atmosphere was driving the ocean, rather than the other way around 

(Davis 1976; Haworth 1978). An important outgrowth of these studies was that much of the SST 

variability was concentrated in large-scale patterns and that these patterns were persistent over 

several months and hence predictable. The prediction of atmospheric conditions from previous 

extratropical SSTs was somewhat more encouraging when stratified by season (Davis 1978, 

Harnack 1979, Walsh and Richman 1981), but the amount of the predicted variance was small (< 

20%) and the relationships between extratropical atmosphere-ocean variables may result from 

both being influenced by conditions in the tropical Pacific (Barnett 1981). Indeed, more recent 

observational and modeling studies confirmed that “the atmospheric bridge”, where ENSO-

driven changes in the atmospheric circulation affect the ocean beyond the equatorial Pacific, 

strongly impacts North Pacific SSTs on interannual and decadal time scales (e.g. Alexander 

1992; Lau and Nath 1994, 1996; Alexander et al. 2002).
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A wide array of both physical and statistical methods has been used to predict ENSO 

variability (see reviews by Latif et al. 1998, Barnston et al. 1999, Mason and Mimmak 2002).  

Forecasts from coupled ocean-atmosphere models of varying complexity include "intermediate" 

coupled models, in which anomalous air-sea interaction is simulated in simplified physical 

atmosphere-ocean models within the tropical Pacific domain (e.g. Cane et al. 1986, Zebiak and 

Cane 1987), "hybrid" coupled models that consist of a physical ocean model coupled to a 

statistical model of the atmosphere (Barnett et al. 1993; Balmeseda et al. 1994) and coupled 

general circulation models (GCMS; e.g. Kirtman et al. 1997; Stockdale et al. 1998; Saha et al. 

2006). Statistical ENSO forecast techniques include linear methods such as multiple linear 

regression ("ENSO-CLIPER" Landsea and Knaff 2000), canonical correlation analyses (CCA, 

Barnett et al. 1988; Barnston and Ropelewski 1992) and linear inverse models (LIMs; Penland 

1989; Penland and Sardeshmukh 1995b, PS95), where the latter uses concurrent and lagged 

covariance statistics to predict the evolution of the system and diagnose its dynamics. Nonlinear 

statistical methods, such as neural networks (Tangang et al. 1998), Nonlinear Principal 

Component Analysis (Monahan 2001), and quadratic inverse models (Kondrashov et al. 2005), 

have also been used to forecast ENSO. 

In contrast to the tropical Pacific, there have been far fewer attempts to forecast the North 

Pacific Ocean and often these are part of a broader effort to predict global ocean conditions. For 

example, NCEP has recently instituted a Climate Forecast System (CFS; Saha et al. 2006), which 

predicts global SSTs using a coupled GCM. A two-tier approach has also been developed to 

make three-month lead forecasts of North Pacific upper ocean conditions (Auad et al. 2004), in 

which an AGCM is driven by persistent initial SST anomalies (i.e. the SSTs are held fixed over 

the duration of the atmospheric model run) and then the anomalous flux fields from the AGCM 
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are used to drive an OGCM. While this method has shown some success in some regions, the 

forecasts are of limited duration and skill due to the chaotic nature of the extratropical 

atmosphere and biases in the simulation of the extratropical ocean in the OGCM. Previous 

statistical methods used to predict global SSTs, have also had limited success in forecasting 

extratropical SSTs on seasonal and longer time scales (Landman and Mason 2001). Given that 

there are well-understood oceanic processes that evolve over seasonal and longer time scales, a 

targeted effort should be able to improve forecasts of the North Pacific Ocean.

Pronounced decadal fluctuations occurred over the North Pacific during the 20th century, 

which Mantua et al. (1997) termed the Pacific Decadal Oscillation (PDO) based on transitions 

between relatively stable states of the dominant pattern of North Pacific SST anomalies. The 

PDO consists of anomalies of one sign in the central-west Pacific between approximately 35°N-

45°N, ringed by anomalies of the opposite sign, which is the most prominent pattern on 

interannual as well as decadal time scales (Zhang et al. 1997; Vimont 2005). The decadal SST 

transitions were accompanied by widespread changes in the atmosphere, ocean and marine 

ecosystems (e.g. Miller et al. 1994; Trenberth and Hurrell 1994; Benson and Trites 2002). The 

associated SST anomalies extend over the entire basin and are symmetric about the equator 

(Zhang et al. 1997; Garreaud and Battisti 1999; Enfield and Mestãs Nunez 1999), leading some 

to term the phenomenon the Interdecadal Pacific Oscillation (IPO; Power et al. 1999; Folland et 

al. 2002), suggesting that forecasts of the PDO (or IPO) should include information from the 

Pacific as a whole. 

The mechanisms proposed to explain Pacific decadal climate variability, including the PDO, 

can be classified as extratropical or tropically forced. Extratropical mechanisms for the PDO 

include intrinsic atmospheric variability that force the ocean through surface heat fluxes (e.g. 
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Frankignoul and Hasselmann 1977), large-scale patterns of heat fluxes plus advection by the 

mean ocean gyres (Saravanan and McWilliams 1998; Wang and Chang 2004), and by wind-

driven adjustments in the ocean circulation via Rossby waves (Frankignoul et al. 1997; Jin 1997; 

Neelin and Weng 1999). If the SSTs induced by the altered circulation exert a strong positive 

feedback on the atmospheric, air-sea interaction combined with fluctuations in the extratropical 

ocean gyres may result in self-sustaining decadal oscillations (Latif and Barnett 1994, 1996; 

Robertson 1996; Kwon and Deser 2006). Atmospheric teleconnections from the equatorial 

Pacific can impact North Pacific SSTs primarily through variability in the surface fluxes and 

Ekman transport (Trenberth 1990, Graham et al. 1994, Deser et al. 2004, Alexander et al. 2002, 

Seager et al. 2004).  

Several recent studies have used statistical analyses to reconstruct the annually averaged 

PDO and determine the processes that underlie its dynamics. Newman et al. (2003b) found that 

for annual average anomalies (July-June) the PDO is well modeled as the sum of atmospheric 

forcing represented by white noise, forcing due to ENSO, and memory of SST anomalies in the 

previous year. The latter results in part from the “reemergence mechanism”, where ocean 

temperature anomalies created in winter are sequestered below the mixed layer in summer and 

then re-entrained into the mixed layer in the following fall and winter (Alexander and Deser 

1995, Alexander et al. 1999, Deser et al. 2003). Schneider and Cornuelle (2005) found that the 

annually averaged PDO could be reconstructed based on a first-order autoregressive model and 

forcing associated with variability in the Aleutian Low (essentially internal atmospheric noise), 

ENSO and wind-driven Rossby waves in the North Pacific Ocean. On interannual time scales, 

ENSO and the Aleutian Low were about equally important at determining the PDO while on 

decadal timescales, all three processes, including ocean dynamics, were of equal importance. 
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Newman (2007) expanded upon the heuristic PDO model (Newman et al. 2003b) by constructing 

a LIM from tropical and extratropical annual SST anomalies that indicated three patterns 

explained most of the variability of the PDO: ENSO-like patterns with period of 5 years and 25 

years, and a pattern that reflects very low frequency variability that also resembles the trend over 

the last fifty years. While Schneider and Cornuelle (2005) and Newman (2007) found modes that 

had decadal periods, all of the modes were damped on sub-decadal timescales, implying that 

statistical predictions of the PDO are possible on seasonal-to-interannual but not decadal time 

scales. 

We are interested in constructing an empirical model that can predict Pacific SSTs on 

seasonal time scales and be used to diagnose how different ocean regions impact these 

predictions. Linear inverse models (LIMs) have been used to study and predict many aspects of 

the climate system (e.g. Farrell and Ioannou 1995; Zhang and Held, 1999; Winkler et al. 2001). 

Further, LIM has been used extensively to make forecasts of SST anomalies in the tropical 

Pacific associated with ENSO (Penland and Magorian 1993; PS95), and in the tropical Indian 

and Atlantic Oceans as well (Penland and Matrosova 1998, PM98) that are skillful at lead times 

of up to ~15 months. These forecasts, available at http://www.cdc.noaa.gov/forecast1/Frcst.html, 

are competitive with dynamical forecasts methods, especially for forecast leads of six months 

and greater. In the present study, we will expand the LIM-based predictions to include North 

Pacific SSTs, with a focus on predicting the PDO.  We will also use LIM in conjunction with 

composite analyses to understand the physical processes that influence the development of 

ENSO events and the evolution of the PDO. 

2. Methods and Data
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a. LIM

Inverse modeling can be defined as the extraction of dynamical properties of a system from 

its observed statistics. It can be contrasted with forward modeling in which one defines the 

system dynamics from the equations for heat, mass and momentum with specified parameters. 

LIM assumes that a system can be separated into a linear deterministic portion and a nonlinear 

portion that can be represented by white noise - random fluctuations that may be correlated in 

space but not over time. The deterministic portion, the part that is used in making forecasts, is 

estimated using eigenfunction analysis of matrices whose elements are estimated from multiple 

linear regression (e.g. von Storch et al. 1988) and is related to other statistical methods. For 

example, LIM-generated forecasts are identical to those from canonical correlation analysis

(CCA) when all canonical patterns are superposed (DelSole and Chang 2003). By including a 

stochastic component, LIM also allows one to test several aspects of the forecasts, including its 

error characteristics. Here we provide only a brief description of LIM, as the underlying 

assumptions, the procedures used to derive it and its strengths and weaknesses have been 

described in a wide array of studies (e.g. Penland 1989, 1996; PS95; DelSole and Hou 1999; 

Winkler et al 2001; Newman et al. 2003a).  

Linear inverse modeling assumes that the relevant dynamics can be written in the form of a 

linear stochastic differential equation

dx/dt = Bx + ξ , (1)

where x is the state of the system, B the evolution operator and ξ is stationary white noise. For 

LIM to be an appropriate forecast method with stationary statistics, B must be dissipative, i.e. its 
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eigenvalues must have negative real parts. In LIM, one assumes that Eq. 1 is valid, resulting in 

the relation

C(τ) = G(τ)C(0), (2)

where 

G(τ) = exp(Bτ), (3)

and C(0) and C(τ) are the covariance matrices of vector x at lags 0 and τ. In a forecasting 

context, G(τ)x(t) represents the “best” forecast (in a least squares sense) of x(t+τ) given x(t). The 

matrices B and G can then be determined from observational estimates of C(0), and C(τ0) at 

some lag τ0, i.e.

B = τ0
−1 ln{C(τ0)C(0)−1}.     (4)

Unlike multiple linear regression, in the LIM framework B and G are independent of the choice 

of τ0. How well this holds in practice provides one measure of the efficacy of using LIM for a 

given system (PS95, Penland 1996). 

Once B has been computed, the statistics of the noise forcing (ξ) can be determined from the 

fluctuation-dissipation relationship (FDR), 

BC(0) + C(0)BT + <ξ ξ T> dt = 0, (5a)
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essentially a budget of the second order moments of the system. The angle brackets in Eq. 5a 

denote an ensemble mean estimated here as a time average. In this study, we use a slight 

generalization of Eqs. 1-5a: the statistics of ξ are allowed to be periodic. The LIM formalism still 

holds provided that all averages in Eqs. 2-4 are interpreted as integrals over the annual cycle. The 

time dependence of the noise statistics are estimated using the annually varying equal-time 

covariance matrix of x in the time-dependent FDR (e.g., Penland and Matrosova 1994):

B<xxT> + <xxT>BT + <ξ ξ T> dt = 
d < xxT >

dt
. (5b)

Here we have defined the state vector, x, only in terms of SST anomalies. The linear 

influence of other variables on SST evolution, such as surface fluxes and oceanic advection, 

however, are implicitly included in B.

b. Data

To maintain the continuity with previous LIM-based SST prediction studies (e.g PS95, 

PM98), we use the collection of historical records from ship observations from the 

Comprehensive Ocean – Atmosphere Data Set (COADS; Woodruff et al. 1987, Worley 2005 et 

al. 2005). The initial data consist of monthly mean SSTs for the period of January 1951 to 

December 2000 over the Pacific Ocean between 30°S and 60°N. The data, which were originally 

on 2° lat x 2° lon grid, were consolidated onto a 4° x10° grid, with the requirement that at least 

four of the original ten grid boxes have observations in any given month. SST data were 

smoothed using a three-month running mean and anomalies were calculated relative to the 1951-

2000 climatology in each 4°x10° grid square. The three-month coarse graining does not allow 
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some dynamical processes, such as convective complexes or instability waves, to be explicitly 

resolved, but rather allows their effect to be approximated as stochastic forcing.

As in many previous studies, LIM is constructed using a reduced space of Empirical 

Orthogonal Functions (EOFs) where the state vector (x), consists of the amplitude of the 

corresponding principal components (PCs). No artificial noise was used to regularize the 

covariance matrix used to estimate the EOFs, but the EOF projection is itself a mild 

regularization of the system since dimensions corresponding to very small negative eigenvalues 

of the covariance matrix are eliminated by truncating the EOF expansion. Truncating the 

number of EOFs also reduces the data for processing and elimininates some of the errors due to 

missing or imperfect data. Here, we have retained the 15 leading EOFs, which explain 65% of 

the total variance. For individual grid squares these EOFs explain > 80% of the variance in 

portions of the central/eastern tropical Pacific and in the vicinity of 45°N, 150°W, > 65% over 

most of the ENSO region and the northeast Pacific, > 50% outside the tropical convergence 

zones, and > 35% over nearly the entire domain (see 

http://www.cdc.noaa.gov/forecast1/descrpdo.html). 

Following Penland (1996) and PM98, estimates of G(τ0), with τ0 = 3 months, were obtained 

using a jackknife approach, where G(τ0) is calculated from 45-years of data in the 1951-2000 

period and then used to forecast SSTs in the excluded five year periods. We use six non-

overlapping verification periods during 1971-2000, when the data are most reliable. For 

example, G(τ0) was estimated using data from JFM 1951 — OND 1971 and NDJ 1976 — OND 

2000 and verified in NDJ 1971 – OND 1976. The EOF basis computed from all 50 years of data 

was used in the cross validation procedure, which could result in shared information between 

prediction and verification periods. In practice, Penland and Sardeshmukh (1995a) found that the 
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spatial patterns of the individual SSTA EOFs differed only slightly when verification periods 

comparable to those used here were excluded, while in a similar context Newman et al. (2003a) 

found that using an EOF basis that excluded the verification period had a very small impact on 

forecast skill. The forecast skill was assessed using the average of the statistics estimated during 

each verification period. Application of the “tau-test” (Penland 1989; PS95) indicated forecast 

skill was robust for varying τo.

c. Empirical normal modes

The eigenvector solutions to the determinsitic portion of Eq. 1, i.e. 

dx/dt = Bx, (6)

were termed Principal Oscillation Patterns (POPs) by Hasselmann (1988) and von Storch et al. 

(1988), who were concerned with finding a single pattern or pair of patterns that dominated the 

field of interest. Penland and Ghil (1993) used the term Empirical Normal Modes (ENMs) to 

describe these eigenvectors to emphasize their collective behavior and to conform to terminology 

used in other scientific disciplines.  ENMs can be expressed as 

x j(t) = {aj cosωjt + bjsinωjt} exp(σjt) (7)

where ωj /2π and 1/σj are the period and decay time of the jth ENM, and aj and bj are real vectors 

that satisfy the conditions aj•bj = 0, aj•aj = 1, and bj•bj ≥ 1 (with no implied summation over j) 

and j increases as the decay time decreases (PS95). Since the data are described in terms of an 

EOF expansion truncated at 15 members, no more than 15 ENMs can be estimated. The ENMs 
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take the form of either oscillatory paired modes that evolve from a→b→−a→−b→a over one 

period, or a single stationary mode (ωj = bj = 0).

Here we only briefly discuss the ENMs for the SST anomalies as they have been studied 

extensively for the tropics (30°N-30°S) by Penland and Magorian (1993), PS95, PM98, and 

Penland and Matrosova (2006). In general agreement with these studies, the evolution of ENSO-

related SST anomalies in the tropical Pacific are dominated by a few (five in this analysis: j=3-

6,8) normal modes. In addition, there are two stationary modes (j=1,2) that represent a global 

very low frequency signal (nearly a trend) with a strong projection on both the tropical and North 

Pacific Ocean. The evolution of the sum of these modes is nearly identical to a single mode

isolated in Penland and Matrosova (2006).

d. The PDO

Following Mantua et al. (1997) we first calculate the PDO from the leading EOF of North 

Pacific (20°N – 60°N) SSTAs, with the difference that we use three-month running means on a 

4°x10° grid.  The EOF pattern is very similar to that of Mantua et al., with anomalies of one sign 

in the central and west Pacific between approximately 35°N-45°N ringed by anomalies of the 

opposite sign (Fig. 1a). The corresponding time series, or principal component, is termed the 

“original PDO”. Since we are interested in using our inverse model to predict the PDO, we 

compute a “reconstructed PDO” time series by first reconstituting the SSTAs in geographical 

space using the 15 basin-wide EOFs and then projecting these SSTAs in the North Pacific onto 

the original PDO EOF. The reconstructed PDO has a very close correspondence with the 

original, i.e. the correlation  (r) between the two time series is 0.99 (Fig.1b).  Given the two are 

nearly identical, we will refer to the reconstructed values as the PDO from hereon. 
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The time series of SSTA in the Nino 3.4 region (5°N-5°S, 170°W–120°W), also shown in 

Fig. 1a, has a simultaneous correlation of 0.5 with the PDO (0.53 in the EOF-space 

reconstruction and 0.48 in the untruncated SST time series, all significant at the 95% level taking 

into account serial correlation) which suggests a moderately strong relationship between the 

PDO and SSTs in the ENSO region.  This correlation is higher than the 0.38 value reported by 

Mantua et al. (1997) due to the reduction in noise by using three-month running means rather 

than monthly values; differences in the data sets, periods of record, and ENSO indices may also 

effect the ENSO-PDO r values obtained by the two studies.

3 LIM Results

a. SST Predictions

As a first step in predicting North Pacific SSTs, we evaluate forecasts of the Pacific Decadal 

Oscillation, given its relevance to the climate and ecosystem research communities. We assess 

the error in the LIM-based PDO forecasts by comparing them to other prediction methods, 

including a theoretical error estimate, persistence and an autoregressive model. Under LIM any 

two states separated by a time interval τ are related by x(t+τ) = G(τ)x(t) + ε , where ε is the error 

vector. The theoretically-expected global error covariance, representing the effect of the 

unpredictable stochastic forcing but not uncertainties in estimating G(τ) or inaccuracies in the 

initial conditions, is given by

E(t,τ) = <x(t+τ)xT(t+τ)> – G(τ)<x(t)xT(t)>GT(τ). (8)

where E(t,τ) is solely a function of lead time τ  if the white-noise forcing is stationary. Eq. 8 
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provides a measure of the expected forecast error due to unpredictable dynamics. Thus, the 

similarity between the theoretical and the actual forecast errors provide a measure of the 

underlying dynamical assumptions used in the prediction model, i.e. that SST anomalies in the 

Pacific can be well described as a stable linear process driven by additive Gaussian white noise

(Penland and Matrosova 2001, Newman et al. 2003a). 

The mean square error variance of PDO forecasts from i) LIM, ii) persistence, and iii) a 

univariate first-order autoregressive (AR1) method with a decay time of ~22 months, computed 

from –1/ln of the one-month lag autoregression value, as well as iv) the theoretical error estimate 

(E(t,τ)), all averaged over the annual cycle and normalized by the variance of the observed PDO 

time series, are shown in Fig. 2a. (Results from an AR2 model of the PDO are not shown as they 

had nearly identical forecast skill as the AR1 scheme). Of these methods, LIM provides the best 

forecasts, especially at lead times of 5-15 months. AR1 models, like those used by Frankignoul 

and Hasselman (1977) to predict midlatitude SST anomalies at a given location, assume the 

dynamics to be local red noise (with a lag one autocorrelation between 0.0 and 1.0) and therefore 

cannot predict anomaly growth.  Fig. 2a indicates that even though the PDO has low-frequency 

variability its evolution is better predicted by LIM, where anomalies can grow via superposition 

of damped modes, then by an AR1 model (as discussed further in the following section). The 

actual forecast errors are also close to the theoretical uncertainty estimates, suggesting that the 

underlying dynamics in the LIM forecasts are reasonable. 

Is the model skill in predicting the PDO due to information residing in the extratropical SSTs 

or does it arise from ENSO teleconnections and/or other signals originating from outside the 

North Pacific? While a LIM based solely on North Pacific SSTA could be developed to examine 

this question, the predictions would still be influenced by ENSO via its indirect influence on B. 
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Instead, following Penland and Matrosova (2006), we construct a filter based on the empirical 

normal modes from the full Pacific domain to extract the “ENSO signal” and a “global trend” 

(see section 2.c). These signals are identified by the strong projection of the relevant modal 

adjoints onto an “optimal initial structure” (discussed in section 3.b), or alternatively the

combination of normal modes whose constructive interference maximizes the field variance - the 

norm used here. The field obtained by combining the ENMs whose adjoints do not project onto 

the OS are termed “the residual”. The normalized prediction errors and the correlation between 

the predicted and actual PDO time series from the complete LIM, the residual modes, and the 

residual plus the trend modes are shown in Figs. 2b and 2c, respectively. The filtered forecasts 

suggest that ENSO and the global trend provide much of the predictability for the PDO.  For 

example, the correlation between the observed and the PDO forecasts from the full LIM, the 

residual+trend and the residual drop below 0.4 at leads of  approximately 15, 10 and 4 months, 

respectively.  Thus, we focus on the predictions from the complete LIM from hereon. 

Predictions of the PDO time series at four lead times: 3, 6, 9 and 12 months (thick lines) and 

the corresponding observed PDO time series (thin lines) are presented in Fig. 3 for the period

NDJ 1971 - OND 2000. The forecasts are generated for five-year non-overlapping data 

segments, which results in gaps of 3, 6, 9 and 12 months in the corresponding time series. The 

correlation between the predicted and observed PDO for all seasons during 1971-2001 is 0.81, 

0.67, 0.55 and 0.44 at leads of 3, 6, 9, and 12 months, respectively. These values are significant 

at the 95% level and are comparable to LIM-based forecasts of SSTs in the NINO 3 region (5°N-

5°S, 150°W-120°W; e.g. see PS95).

The LIM forecast skill is explored further in Fig. 4a, which shows the correlation between 

the predicted and observed PDO time series as a function of the initial 3-month season and the 
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length of the forecast. The correlation values decrease nearly uniformly with respect to the initial 

forecast time for leads of up to 6 months, but still exceed 0.6 regardless of which season they 

were initiated. For longer forecasts, those commenced during the cold season, particularly in late 

winter, tend be more skillful than those that begin in summer. For example, the correlations 

between the observed and predicted PDO are approximately 0.6, 0.2, 0.4 for 12-month forecasts 

initiated in JFM, JAS, and NDJ, respectively. The correlation between the observed and LIM-

based forecast of SST anomalies in Nino 3.4 are shown in Fig. 4b. The ENSO correlation skill 

tends towards a local maximum for forecasts that verify in DJF, which can result in forecasts at 

longer leads having greater skill.  For example, the skill of predictions initialized in MJJ 

increases slightly for leads from five to eight months, corresponding to forecasts that verify in 

SON and DJF, respectively. Overall, the PDO and ENSO forecasts are of comparable skill, 

although the latter generally exhibit higher correlations for τ  < 6 months, particularly for 

forecasts that begin in spring and summer. 

The LIM-based forecasts provide useful information for SST evolution over much of the 

Pacific, as indicated by the geographical distribution of correlations between the model forecasts 

at lead times of 3, 6, 9 and 12 months and observations in each 4°x10° grid square (Fig. 5). The 

correlations exceed 0.6 for almost the entire domain for three-month forecasts and 0.4 over much 

of the eastern tropical Pacific and western tropical Pacific north of the equator for forecasts out 

to 12 months. In the North Pacific, regions of higher skill occur in the the southern Bering sea, 

the central basin (near 30°N, 170°W), and along the coast of North America. SST anomalies in 

these regions are influenced by “the atmospheric bridge” via teleconnections associated with 

ENSO (e.g. Alexander et al. 2002) and for near-shore regions by coastally-trapped waves (e.g. 

Enfield and Allen 1980; Ryan and Noble 2002, Strub and James 2002).  
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Given that the PDO forecasts issued in winter appear to be the most skillful beyond ~6 

months (Fig. 4), the correlation between the observed SSTs and the corresponding 12-month 

forecast initiated in JFM over the Pacific domain are shown in Fig. 6. The model forecasts 

exhibit significant skill (r > 0.4) in: i) the central subtropics of the Southern Hemisphere; ii) the 

central equatorial Pacific with an extension towards central America; iii) the vicinity of the 

maritime continent, iv) in the central North Pacific and v) the subartic Pacific extending from 

Canadian coast to the Kamchatka Peninsula.  The latter two areas closely coincide with regions 

of strong loadings for the leading EOF of North Pacific SST anomalies, i.e. the PDO pattern (c.f.

Fig. 1a).

b. Model Dynamics: anomaly growth and the optimal structure 

Within the LIM framework, variability is modeled as a multivariate process, whose 

properties differ from univariate systems in two key ways: i) the spatial structure of the patterns 

can evolve over time and ii) even though the amplitude of the patterns are damped, constructive 

interference between patterns is still possible enabling transient energy growth (e.g., Farrell 

1988). Here we define energy growth as the increase in SSTA variance integrated over the whole 

domain, where the energy changes by a factor corresponding to an eigenvalue of GTG(τ).  The 

fastest growth in the absence of forcing occurs when the initial condition projects strongly onto 

the leading eigenvector (φ1) of matrix GTG whose basis is orthonormal (in contrast to B); the 

growth rate of φ1 is given by the leading eigenvalue (γ1). The γ1 values as a function of the 

forecast time τ, refered to as the “Maximum Amplification Curve” (Borges and Sardeshmukh 

1995; PS95), are shown in Fig. 7. The maximum growth rate of approximately 2.2 occurs at τ

of 6-7 months, and growth (γ1> 1) is limited to ~14 months.  The general form of the curve is 
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similar to those based on SST anomalies in the tropical IndoPacific (PS95) and the global tropics 

(PM98); although here the amplification is weaker and the period over which growth occurs is 

shorter than in PS95 and PM98.

The SSTA pattern that undergoes the maximum growth, the optimal (initial) structure, occurs 

when x(0) strongly projects on φ1(τ). When the optimal structure (OS) for φ1(7) (Fig. 8a) is 

specified as the initial condition in Eq. 6, the SSTA field evolves into the pattern shown in Fig. 

8b seven months later. The latter closely resembles the mature ENSO state, including the bridge-

related SST anomalies in the North Pacific. The extratropical portion of Fig. 8b also strongly 

resembles the PDO pattern (see Fig. 1a). The close correspondence between the North Pacific 

SST forecasts initiated with the OS and the observed PDO is demonstrated in Fig. 9, which 

shows the pattern correlation between the two as a function of forecast time.  The correlation is 

~0.2 at τ=0 but increases to more than 0.9 for τ between 6 and 9 months. In addition, if we 

construct a monthly time series of the pattern correlation between the OS and SSTA at zero lag 

(a measure of the projection of the OS onto the data) the temporal correlation between this time 

series and the observed PDO time series seven months later is 0.6 (significant at the 95% level). 

Although there is clearly skill in predicting the PDO based on the optimal structure, the 

amplitude of the anomalies centered near 35°N, 160°W in the LIM-forecasts (Fig. 8b) are 

somewhat weaker than in the PDO pattern and in most analyses of ENSO-related North Pacific 

SST anomalies.

While the deterministic matrix B derived here is not seasonally dependent, the optimal 

structure may still preferentially occur at a given time of year. The seasonal dependence of the 

projection of the OS on the observed SST field is examined in Fig. 10, which shows the number 

of times out of the 50 year record that the pattern correlation between the two fields exceeds 0.4 
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or -0.4 as a function of the three-month season.  The OS tends to occur more frequently in the 

first half of the year with a maximum in spring.  Although the tendency for the OS to occur in 

spring is based on a fairly small sample, it is consistent with the evolution of the physical system, 

i.e. the maximum gain in the LIM forecast from the OS occurs over approximately 6-9 months 

(Fig. 7), thus a forecast initiated in spring peaks during boreal winter, which is also when the 

mature phase of ENSO occurs in nature.  

c. Physical  interpretation of the optimal structure

While LIM has identified the optimal structure as the SSTA pattern that is most likely to 

grow into a large ENSO and PDO event, the physical processes for why this occurs are unclear, 

as the OS does not have strong loading in the equatorial Pacific and the anomalies in the North 

Pacific are nearly in quadrature with the PDO pattern. Recent studies, however, have suggested 

that extratropical-tropical interactions via subtropical SSTAs may be important for the excitation 

of ENSO events and Pacific decadal variability (Vimont et al. 2001, 2003a, 2003b; Anderson 

2003, 2004). Large fluctuations in internal atmospheric modes over the North Pacific in winter, 

especially the North Pacific Oscillation, impart an SST "footprint'' on the underlying ocean via 

changes in the surface heat fluxes. The SST footprint, which peaks in spring and persists through 

summer in the subtropics, impacts the atmospheric circulation including zonal wind stress 

anomalies that extend onto the equator. This “seasonal fooprinting mechanism” (SFM) also 

influences the latitude of the tropical SST gradient and the intertropical convergence zone 

(ITCZ): the ITCZ is displaced towards (away from) the hemisphere with anomalously warm 

(cold) water and the associated winds flow across the equator from the negative towards and 

over the positive SSTA. The meridional displacements of the SST gradient and the ITCZ, termed 
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the “merdional mode” (MM) by Chiang and Vimont (2004), has been well documented in the 

Atlantic over the past 30 years but was only recently uncovered in the Pacific after accounting 

for the dominant ENSO signal. While, the existence of the SFM and MM appear to be 

independent of ENSO, as they occur in coupled models where only thermodynamic ocean-

atmosphere interaction is permitted, the equatorial wind associated with these modes may 

stochastically force the equatorial Pacific Ocean and thus be an effective generator of interannual 

and decadal ENSO variability (Vimont 2001, 2003a; Chiang and Vimont 2004; Chang et al. 

2006).  

Thus the question arises: is there a relationship between the optimal structure and the 

Seasonal Footprinting Mechanism/meridional mode? The SST anomalies associated with the OS, 

SFM and MM all peak in the northern subtropics during late winter and spring. Vimont et al. 

(2003a) and Chang et al. (2006) also mention that the SSTA pattern associated with the SFM and 

MM during boreal spring resemble the OS. Here, we derive ENSO precusors relative to the 

optimal structure and see if they are consitent with the SFM and MM analyses. Specifically, we 

construct composites based on when the spatial correlation between OS and the observed SSTA 

field is > 0.4 and <-0.4 during MAM. The difference between these + and - composites for three 

month seasons of SST/sea level pressure (SLP) and vector winds/net surface heat flux are shown 

in Fig. 11 for DJF, MAM, JJA and NDJ, corresponding to lags of -3, 0, +3 and +7 months.  All 

of the variables are obtained from NCEP reanalysis for the period 1951-2000 and displayed on a 

2.5° lat x 2.5° lon grid.  

In the winter prior to when the OS peaks (lag -3), the SLP difference or anomaly field 

exhibits a meridional dipole between 170°E and 110°W, that resembles the North Pacific 

Oscillation (e.g. Walker and Bliss 1932; Rogers 1981, 1990) and is consistent with the first phase 
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of the SFM. The SST field during this time has negative anomalies in the western Pacific 

between about 20°N-30°N and is ringed by positive anomalies. The low persists in the North 

Pacific and the positive SST anomalies amplify over the next 3 months. The SST anomalies 

during winter and spring appear to result from surface heat fluxes, including the subtropics 

(approximately 10°N-25°N) where the flow along the southern flank of the low opposes the 

mean trades reducing the upward net heat flux. The positive SSTAs that extend from Baja 

California to the equator, 160°E (MAM, lag 0), are closely aligned with those in the SFM and 

the MM (Vimont et al. 2003a; Chiang and Vimont 2004; Chang et al. 2007), which Vimont et al. 

(2003b)  and Chiang and Vimont (2004) have shown influence the winds over the tropical 

Pacific. Feedback between the tropical winds, evaporation, and sea surface temperature (“WES 

feedback”), can act to amplify the SFM/MM climate anomalies, particularly in late spring and 

summer (Chang et al. 2007). From DJF (lag -3) through the following JJA (lag +3) the westerly 

winds intensify over the central and western equatorial Pacific, which can efficiently force 

downwelling equatorial Kelvin waves and lead to a mature El Niño event during the subsequent 

winter (NDJ, lag +7).  

The time series of the springtime optimal stucture, as given by the pattern correlation 

between the observed and OS SST pattern in each MAM from 1951-2000, along with indices 

associated with the SFM and MM, are shown in Fig. 12.  The OS varies over a wide range of 

time scales, including decadal, e.g. the OS is generally positive for 1980-1997. The wintertime 

NPO, as indicated by the second EOF of North Pacific SLP during NDJF (not shown), strongly 

resembles the meridional dipole shown in Fig. 11a; the temporal correlation between the 

associated principal component (PC2; Fig 12a) and the OS is 0.39 (significant at the 95% level) 

but increases to ~0.5 when the NPO is computed for FMAM.  A second measure of the 
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wintertime atmospheric circulation, the SLP anomaly in NDJF over the subtropical North Pacific 

(15°N-30°N,170°W-140°W, box in Fig. 11a) is also shown in Fig. 12.  The correlation between 

the subtropical SLP and the OS time series is 0.63, but drops to 0.4 if the SLP region is shifted 

north to 25°N-45°N.  These results suggest, that while the NPO may be a precursor to the OS 

(and the SFM/MM), the key feature is the anomalous circulation on the southern flank of the 

NPO, namely the strength and position of the subtropical high.

The optimal structure also exhibits significant temporal relationships with tropical SFM/MM 

indices, including a measure of the meridional mode, the zonal winds in the western equatorial 

Pacific during summer and the SSTs in the Nino 3.4 region in the following winter. The MM 

time series was computed by first determining the dominant co-varying pattern between the SST 

and both components of the NCEP reanalysis surface winds in MAM over the Pacific from  

20°N-20°S during non-ENSO years. Then the temporal variability was derived by projecting the 

monthly zonal wind stress anomaly onto the leading zonal wind stress pattern. Finally, the 

monthly time series was averaged over JFMAM to obtain the MM index shown in Fig. 12.  The 

correlation between the OS and MM indices is 0.52 (r=0.61 when the MM is derived from the 

European Center reanalysis [ERA40] for the period 1958-2000). The correlations between the 

OS and the equatorial winds (0°-10°, 140°E-160°W, box in Fig. 11f) in JJA and SSTAs in the 

Nino 3.4 region in NDJ are 0.75 and 0.73, respectively.  Figure 12 indicates that there is 

temporal coherence between the optimal structure and components of the SFM/MM, particularly 

the circulation over the North Pacific in the previous winter, the SSTAs in the subtropics in 

spring, the winds in the western equatorial Pacific in the subsequent summer, and SSTAs in the 

ENSO region in the following winter.
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4 Discussion and Conclusions

A linear inverse model, the statistical forecast method used by Penland and collaborators to 

predict tropical SST anomalies, has been extended here to include the North Pacific. LIM 

assumes that the evolution of the system can be represented by linear dynamics forced by white 

noise. The model predictors and subsequent forecasts are based on three month running mean 

Pacific SST anomalies between 30°S and 60°N. The prediction coefficients in this study are not 

seasonally dependent.  However, the forecast skill varies with the initial conditions and with the 

stochastic disruption of the prediction, both of which are a function of the time of year. The 

model exhibits significant skill over much of the Pacific for 2-3 seasons in advance and up to a 

year in some locations, particulary for forecasts initialized in boreal winter. We also investigated 

the model’s ability to predict the Pacific Decadal Oscillation, the time series giving the 

amplitude and sign of the leading pattern of North Pacific SST anomalies. The correlation 

between the predicted and observed PDO for all seasons during 1971-2001 is 0.81, 0.64, 0.55 

and 0.44 at leads of 1, 2, 3, 4 seasons, respectively, while the correlation value is ~0.6 for winter-

to-winter predictions. These values are significant at the 95% level and are comparable to LIM-

based forecasts of SSTs in the Nino 3.4 region.

Within LIM SST anomalies can grow due to constructive interference of the empirically 

determined modes of the system, even though the individual modes are damped over time.  For 

the Pacific domain, the basin-wide SST variance can grow for up to ~14 months, consistent with 

the skill of the actual predictions conducted here and the length of forecast skill of North Pacific 

SSTs estimated in other studies (Grötzner et al. 1999; Scott 2003; Schneider and Cornelle 2005; 

Newman 2007). While the presence of decadal variability, especially at prefered time scales, 

suggests that skillful predictions might be possible at longer lead times, if the processes that have 
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decadal periods are damped on interannual timescales, then the forecast skill will be limited to 

one-to-two years.

The optimal structure, the initial pattern that LIM theory indicates should grow most rapidly 

with time, is clearly relevant to the prediction of Pacific SSTA, as the OS develops into a mature 

ENSO event 6-10 months later. The predicted SSTs in the North Pacific closely resemble ENSO-

related anomalies due to the atmospheric bridge and coastally trapped waves. The former is due 

to ENSO-driven changes in the winds, air temperature and humidity, and clouds that impact the 

underlying ocean via the surface heat, fresh water and momentum fluxes, while the latter is 

generated either by equatorial Kelvin waves that propagate poleward upon reaching the coast or 

by wind stress changes over the eastern North Pacific.  In addition, filtering the data using 

empirical normal modes of the full LIM system indicated that much of the PDO predictability 

resulted from modes associated with ENSO or a global trend, consistent with the findings of 

Livezey and Smith (1999).  No filter, however, is perfect and some of the variability attributed to 

ENSO or global phenomena may originate in the North Pacific.

The tropical-extratropical connections may not be limited to ENSO time scales nor only 

directed from the equatorial to the North Pacific. For example, basin-wide decadal variability is 

suggested by low-frequency normal modes that have strong loadings in both the tropics and 

extratropics as found here and in Newman (2007), as well as the strong coherence on decadal 

time scales between many tropical and North Pacific indices, including the PDO (Deser et al. 

2004). In a LIM where the North Pacific and tropical Pacific SSTA were designated as separate 

state vectors, including tropical-extratropical coupling was critical for obtaining realistic decadal 

variability in both regions (Newman 2007). The extratropics impacted the tropics both by the 

deterministic portion of the LIM, which may occur through either the atmosphere (Barnett et al. 
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1999, Pierce et al. 2000) or the ocean (Gu and Philander 1997; Kleeman et al. 1999; Yang et al. 

2004), and by spatially coherent stochastic forcing, consistent with the seasonal footprinting 

mechanism.

Composite and time series analyses performed here revealed a close correspondence 

between the development of SST anomalies predicted by LIM and the evolution of the 

atmosphere-ocean system indicated by the SFM prior to ENSO/PDO events. During winters 

when the North Pacific Oscillation, characterized by a meridional SLP dipole over mid-to-high 

latitudes, is strong, the associated anomalous surface fluxes create an SST pattern in spring that 

strongly resembles the optimal structure. As in the SFM, the OS SSTA pattern is linked with 

anomalous westerly winds on the equator during spring and summer, which in turn can force 

oceanic Kelvin waves leading to ENSO events in the following winter. The optimal structure is 

also correlated with the meridional mode, a north-south dipole in tropical SST, precipitation and 

winds, which has also been identified as a spring precursor for ENSO events. From our analyses, 

it is not possible to determine whether the SFM and/or MM would occur in the absence of 

ENSO, as suggested by Vimont et al. (2001, 2003a,b), Chiang and Vimont (2004) and Chang et 

al. (2007).

Other processes may also influence the optimal structure, its relationship to the SFM/MM, 

and how all three relate to subsequent ENSO events. While the OS is correlated with the NPO in 

the previous winter, it appears to be more strongly related to the atmospheric circulation along 

the southern edge of the NPO, suggesting that it is the subtropical atmosphere-ocean interactions 

that are critical to the formation of a subsequent ENSO and PDO events. Additional factors, 

which are at least partially independent from the OS/SFM/MM, impact the evolution of the 

equatorial Pacific Ocean. These include anomalous westerly winds in the central/western 
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equatorial Pacific that are often associated with the Madden and Julian Oscillation (Lau and 

Chan 1986, 1988; Moore and Kleeman 1999; Zavala-Garay 2006) and conditions in the Indian 

Ocean (PS95; Tourre and White 1997; Annamalai et al. 2005). 

While tropical-extratropical teleconnections are clearly important for Pacific climate 

variability, skill in predicting North Pacific SSTAs, including the PDO, may also result from 

midlatitude phenomena.  These include: i) thermal inertia, a process that occurs over the global 

oceans but can greatly enhance persistence in the extratropics during winter when the mixed 

layer is deep; ii) the reemergence mechanism, where SST anomalies created in one winter are 

sequestered in the summer seasonal thermocline and are then re-entrained into the mixed layer in 

the following fall and winter (Alexander and Deser 1995; Alexander et al. 1999; Deser et al. 

2003); iii) wind generated Rossby waves that propagate westward on interannual-to-decadal time 

scales and influence the strength and position of the ocean gyres and the SSTs in the Kuroshio 

region (e.g. Miller et al 1998; Deser at al. 1999, Schneider and Miller 2001; Seager et al. 2001; 

Kwon and Deser 2006); and iv) positive feedbacks between stratus clouds and SSTs (Norris and 

Leovy 1994; Norris et al. 1998; Park et al. 2006). In addition to the atmospheric bridge, the 

seasonality in forecast skill (see Fig. 4) may partly result from processes i) – iii), which most 

strongly impact SSTs during winter. The predictability from these processes, however, may not 

be full realized without the explicit inclusion of the seasonal cycle and subsurface information in 

the forecast system.
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Figure Captions

Fig. 1. a) EOF 1 of North Pacific (20°N – 60°N) SSTAs using 3-month running mean values on 

a 4°x10° grid.  b) The corresponding time series, PC1 (i.e. the “original PDO”; thick solid line), 

the “reconstructed PDO” using 15 basin-wide EOFs and then projecting these SSTAs in the 

North Pacific onto the original PDO EOF (gray shading) and SSTA in the Nino 3.4 region (5°N-

5°S, 180°-120W°, dashed line). The time series units are °C; for typical values, the PDO 

timeseries can be divided by sqrt(NEOF), where NEOF = 125 is the number of grid boxes in the 

geographical domain of the EOFs. All values are obtained from COADS for the period 1951-

2000.

Fig. 2. a) Mean square forecast error, normalized by mean square amplitude of the verification 

based on predictions from LIM, a univariate AR1 process, persistence and a theoretical estimate 

of the error (see text for details). (b) as in (a) but for filtered forecasts from the residual (modes 

7, 9-15), the residual plus the trend (modes 1, 2, 7, 9-15) and the complete LIM (repeated from 

a). (c) The correlation between the observed and predicted PDO time series from the residual, 

trend+residual and complete LIM.

Fig. 3. LIM-based predictions of the PDO for leads of 3, 6, 9, and 12 months (light solid line) 

and the actual PDO (heavy solid line) for the 1971-2000 verification period. Also shown are the 

correlation value (r) between the predicted and observed PDO averaged over the 6 5-year 

verification periods and the +1 and -1 standard deviation confidence intervals (dashed lines) 

suitable for a stable linear system driven by stochasic forcing. 
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Fig. 4.  Correlation between the predicted and verification time series as a function of the initial 

3-month forecast period and the length of the forecast for a) the PDO and b) Nino 3.4 SSTAs.

Fig. 5. Maps of the correlation between the actual and predicted SST anomalies for predictions 

of 3, 6, 9, and 12 months, averaged over the 6 verification periods spanning 1971-2000. Only 

values sigificant at the 95% confidence level in each 4ºx10º grid square are shown. 

Fig. 6.  As in Fig. 5, but for the correlations between the predicted and observed SSTAs for 12-

month forecasts initialized in JFM.

Fig. 7. The maximum amplification curve: the energy amplification of a forecast optimized to 

give the greatest growth at 7 months; where the growth rate is given by the leading eigenvalue 

(γ1) of the matrix GTG and growth occurs for γ1> 1.

Fig. 8.  The a) optimal structure (OS) which evolves into the SSTA pattern shown in b) in 7 

months. The contour interval is 0.035, although the units are arbitrary.

Fig. 9. The pattern correlation between the PDO and the SSTA field for forecasts of varying 

lengths initialized with the optimal structure.
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Fig. 10. Number of occurrences over the 50-year record of a strong projection of the optimal 

structure onto the SSTA field as indicated by the pattern correlation (r) between the two fields: |r| 

> 0.4 (black bar), r > 0.4 (light gray bar), and r < -0.4 (cross-hatched bar). Positive (negative) 

correlations indicate conditions that are favorable for the development of El Niño (La Niña) 

events.

Fig. 11.  Difference maps between composite averages based on when the correlation between 

the OS and the observed SSTA field is greater than 0.4 and less than -0.4 during MAM. The 

composite differences are shown for SST/sea level pressure (SLP) and the surface vector 

winds/net surface heat flux for DJF, MAM, JJA and NDJ, corresponding to lags of -3, 0, +3 and 

+7 months.  All of the variables are obtained from NCEP reanalysis for the period 1951-2000 

and displayed on a 2.5° lat x 2.5° lon grid.  Boxes indicate regions for computing the subtropical 

SLP and equatorial wind anomalies shown in Fig. 12.

Fig. 12. The time series of the optimal structure along with several indices associated with the 

Seasonal Footprinting Mechanism (SFM) and the meridional mode (MM). Panel a) 2nd principal 

component of SLP over the North Pacific in winter, corresponds to the temporal variability of the 

North Pacific Oscillation pattern, b) SLP anomalies over the subtropical North Pacific in winter 

c) OS time series, given by the pattern correlation between the optimal structure and the 

observed SSTAs in spring, d) the MM time series derived from the dominant co-varying pattern 

between the SST and the surface winds [see text for more details], e) zonal equatorial wind 

anomalies in summer f) Nino 3.4 SST anomalies in the following winter. The correlation 

between the OS and the other time series is given above the corresponding time series (all are 
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significant at the 95% level). All time series have been normalized by their respective standard 

deviation. 
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Fig. 1. a) EOF 1 of North Pacific (20°N – 60°N) SSTAs using 3-month running mean values on 
a 4°x10° grid.  b) The corresponding time series, PC1 (i.e., the “original PDO”; thick solid line), 
the “reconstructed PDO” using 15 basin-wide EOFs and then projecting these SSTAs in the 
North Pacific onto the original PDO EOF (gray shading) and SSTA in the Nino 3.4 region (5°N-
5°S, 180°-120W°, dashed line). The time series units are °C; for typical values, the PDO 
timeseries can be divided by sqrt(NEOF), where NEOF = 125 is the number of grid boxes in the 
geographical domain of the EOFs. All values are obtained from COADS for the period 1951-
2000.
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Fig. 2. a) Mean square forecast error, normalized by the mean square amplitude of the 
verification based on predictions from LIM, a univariate AR1 process, persistence and a 
theoretical estimate of the error (see text for details). (b) as in (a) but for filtered forecasts from 
the residual (modes 7, 9-15), the residual plus the trend (modes 1, 2, 7, 9-15) and the complete 
LIM (repeated from a). (c) The correlation between the observed and predicted PDO time series 
from the residual, trend+residual and the complete LIM.
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Fig. 3. LIM-based predictions of the PDO for leads of 3, 6, 9, and 12 months (light solid line) 
and the actual PDO (heavy solid line) for the 1971-2000 verification period. Also shown are the 
correlation value (r) between the predicted and observed PDO averaged over the 6 5-year 
verification periods and the +1 and -1 standard deviation confidence intervals (dashed lines) 
suitable for a stable linear system driven by stochasic forcing.
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Fig. 4.  Correlation between the predicted and verification time series as a function of the 
initial 3-month forecast period and the length of the forecast for a) the PDO and b) Nino 
3.4 SSTAs.
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Fig. 5. Maps of the correlation between the actual and predicted SST anomalies for 
predictions of 3, 6, 9, and 12 months, averaged over the 6 verification periods spanning 
1971-2000. Only values sigificant at the 95% confidence level in each 4ºx10º grid square 
are shown. 
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Fig. 6.  As in Fig. 5, but for the correlations between the predicted and observed SSTAs 
for 12-month forecasts initialized in JFM.
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Fig. 7. The maximum amplification curve: the energy amplification of a forecast 
optimized to give the greatest growth at 7 months; where the growth rate is given by the 
leading eigenvalue (γ1) of the matrix GTG and growth occurs for γ1> 1.
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Fig. 8.  The a) optimal structure (OS) which evolves into the SSTA pattern shown in b) in 7 
months. The contour interval is 0.035, although the units are arbitrary.
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Fig. 9. The pattern correlation between the PDO and the SSTA field for forecasts of varying 
lengths initialized with the optimal structure.
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Fig. 10.  Number of occurrences over the 50-year record of a strong projection of the optimal 
structure onto the SSTA field as indicated by the pattern correlation (r) between the two fields: |r| 
> 0.4 (black bar), r > 0.4 (light gray bar), and r < -0.4 (cross-hatched bar). Positive (negative) 
correlations indicate conditions that are favorable for the development of El Niño (La Niña) 
events.
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Fig. 11. Difference maps between composite averages based on when the correlation between the 
OS and the observed SSTA field is greater than 0.4 and less than -0.4 during MAM. The 
composite differences are shown for SST/sea level pressure (SLP) and the surface vector 
winds/net surface heat flux for DJF, MAM, JJA and NDJ, corresponding to lags of -3, 0, +3 and 
+7 months.  All of the variables are obtained from NCEP reanalysis for the period 1951-2000 
and displayed on a 2.5° lat x 2.5° lon grid.  Boxes indicate regions for computing the subtropical 
SLP and equatorial wind anomalies shown in Fig. 12.
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Fig. 12. The time series of the optimal structure along with several indices associated with the 
Seasonal Footprinting Mechanism (SFM) and the meridional mode (MM). Panel a) 2nd principal 
component of SLP over the North Pacific in winter, corresponds to the temporal variability of the 
North Pacific Oscillation pattern, b) SLP anomalies over the subtropical North Pacific in winter 
c) OS time series, given by the pattern correlation between the optimal structure and the 
observed SSTAs in spring, d) the MM time series derived from the dominant co-varying pattern 
between the SST and the surface winds [see text for more details], e) zonal equatorial wind 
anomalies in summer f) Nino 3.4 SST anomalies in the following winter. The correlation 
between the OS and the other time series is given above the corresponding time series (all are 
significant at the 95% level). All time series have been normalized by their respective standard 
deviation. 


